The points A(-3,-4) and B(5,0) form a line segment. Find the coordinates of the point P that partitions segment AB in a 2:3 ratio. O (0.2, 10.4) O (0.2,-2.4) O (7.2, 10.4) O (7.2,-2.4)

Respuesta :

To find the coordinates of the point P on a line segment AB in ratio 2:3, use the next formula:

[tex]P=(\frac{nx_1+mx_2_{}}{m+n},\frac{ny_1+my_2}{m+n})[/tex]

Where m:n represents the ratio of 2:3

m =2 and n=3

Replace these values using

A(-3,-4) = (x1,y1)

B(5,0) = (x2,y2)

[tex]P=(\frac{(3)(-3)+(2)(5)}{2+3},\frac{(3)(-4)+(2)(0)}{2+3})[/tex][tex]P=(\frac{-9+10}{5},\frac{-12+0}{5})[/tex][tex]P=(\frac{1}{5},\frac{-12}{5})[/tex]

Therefore:

[tex]P=(0.2,-\text{ }2.4)[/tex]

So, the correct answer is the second option (0.2,-2.4)