Respuesta :

Answer:

The coordinates of the fourth side are (6, -8)

Explanation:

Let the coordinate of the fourth side be (x, y)

The diagonals of a parallelogram bisect eachother, so the midpoint of (-3, -2) and (x, y) is equal to the midpoint of (4, -4) and (-1, -6)

[tex]\begin{gathered} (\frac{x-3}{2},\frac{y-2}{2})=(\frac{4-1}{2},\frac{-6-4}{2}) \\ \\ (\frac{x-3}{2},\frac{y-2}{2})=(\frac{3}{2},-5) \\ \\ \frac{x-3}{2}=\frac{3}{2}\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{.}(1) \\ \\ \frac{y-2}{2}=-5\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.(2) \end{gathered}[/tex]

Solving these equations:

x - 3 = 3

x = 3 + 3 = 6

and

y - 2 = -10

y = -10 + 2 = -8

The coordinates are (6, -8)