Given point Q equals negative 6 radical 3 comma negative 6 in rectangular coordinates, what are the corresponding polar coordinates?

Given the rectangular coordinates of point Q:
[tex]Q(-6\sqrt{3},-6)[/tex]You need to remember that the form from rectangular oordinates to polar coordinates is:
[tex](x,y)\rightarrow(r,\theta)[/tex]By definition:
[tex]\begin{gathered} r=\sqrt{x^2+y^2} \\ \\ \theta=tan^{-1}(\frac{y}{x}) \end{gathered}[/tex]In this case, you can identify that:
[tex]\begin{gathered} x=-6\sqrt{3} \\ y=-6 \end{gathered}[/tex]Then, you can determine that:
[tex]\begin{gathered} r=\sqrt{(-6\sqrt{3})^2+(-6)^2}=12 \\ \\ \theta=tan^{-1}(\frac{-6}{-6\sqrt{3}})=\frac{5\pi}{6} \end{gathered}[/tex]Therefore, the polar coordinates are:
[tex](12,\frac{5\pi}{6})[/tex]Hence, the answer is: Second option.