Find the area of the triangle described below. Round to the nearest hundredth.b = 20, a = 29, c = 21

Solution
We want to find the area of the triangle given te sides
b = 20
a = 29
c = 21
Note: Hero formula for calculating the Area of a Triangle
We will first find S
[tex]\begin{gathered} S=\frac{a+b+c}{2} \\ S=\frac{29+20+21}{2} \\ S=35 \end{gathered}[/tex]To find the Area
[tex]\begin{gathered} Area=\sqrt[]{S(S-a)(S-b)(S-c)} \\ Area=\sqrt[]{35(35-29)(35-20)(35-21)} \\ Area=\sqrt[]{35\times6\times15\times14} \\ Area=\sqrt[]{44100} \\ Area=210 \end{gathered}[/tex]Therefore, the area is
[tex]Area=210[/tex]