That is just the chart. Disregard question 6. 7. A survey of 381 adult females produced a mean height of 65.2 inches with a standard deviation of 2.8 inches. Construct a confidence interval based on a 95% confidence level.O (64.92, 65.48)© (64.83, 65.57)O (65.19, 65.21)© (64.96, 65.44)

That is just the chart Disregard question 6 7 A survey of 381 adult females produced a mean height of 652 inches with a standard deviation of 28 inches Construc class=

Respuesta :

Step 1

Given;

[tex]\begin{gathered} n=381\text{ adults} \\ Mean\text{ \lparen}\mu)=65.2 \\ \sigma=2.8 \end{gathered}[/tex]

Step 2

The confidence interval is given as follows;

[tex]CI=\mu\pm t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n}})[/tex]

The test statistic for a 95% confidence interval with α = 0.05, the degrees of freedom, df= n-1 = 381-1=380

[tex]t_{\frac{\alpha}{2},df}=t_{\frac{0.05}{2},380}[/tex][tex]t_{\frac{\alpha}{2},df}=t_{\frac{0.05}{2},380}=1.97[/tex][tex]\begin{gathered} C.I=65.2\pm1.97(\frac{2.8}{\sqrt{381}})=65.2\pm0.2825932406 \\ C.I=(64.92,65.48) \end{gathered}[/tex]

Answer;

[tex]C.I=(64.92,65.48)[/tex]