Respuesta :

The given complex expression is

[tex](-2-4i)(5+6i)[/tex]

The expression can be expanded as follows

[tex](-2-4i)(5+6i)=-2(5+6i)-4i(5+6i)[/tex]

Multiply the numbers

[tex]\begin{gathered} -2(5+6i)-4i(5+6i) \\ =-10-12i-20i-24i^2 \end{gathered}[/tex]

Simplify further

[tex]\begin{gathered} -10-12i-20i-24i^2 \\ =-10-32i-24i^2 \end{gathered}[/tex]

But

[tex]i^2=-1[/tex]

Hence, it follows

[tex]\begin{gathered} -10-32i-24i^2 \\ =-10-32i-24(-1)^{} \\ =-10-32i+24 \\ =14-32i \end{gathered}[/tex]

Therefore, the answer is

[tex]14-32i[/tex]