Consider right triangle APQR below.P2.9RWhich expressions represent the length of side PR?Choose 2 answers:Otan(80° -20°)O tan (90° -20°)1tan(20)1tan(100° -20°)

Consider right triangle APQR belowP29RWhich expressions represent the length of side PRChoose 2 answersOtan80 20O tan 90 201tan201tan100 20 class=

Respuesta :

Solution:

Given the triangle below:

To find the length of side PR, we use trigonometric ratio.

Where

[tex]\begin{gathered} PQ\Rightarrow opposite \\ QR\Rightarrow hypotenuse \\ PR\Rightarrow adjacent \end{gathered}[/tex]

From trigonometric ratio,

[tex]\begin{gathered} \tan\theta=\frac{opposite}{adjacent} \\ where \\ \theta=20\degree \\ thus, \\ \tan20=\frac{PQ}{PR} \\ thus, \\ PR=\frac{PQ}{\tan20} \end{gathered}[/tex]

Given that PQ = 1, we have

[tex]PR=\frac{1}{\tan20}[/tex]

Recall from trigonometric identities:

[tex]\begin{gathered} \frac{1}{\tan\theta}=cot\text{ }\theta \\ cot\text{ }\theta\text{ =}\tan(90-\theta) \end{gathered}[/tex]

Thus, we have

[tex]PR\text{ = }\frac{1}{\tan20}=\tan(90-20)[/tex]

Hence, the expressions that represent the length of side PR are

[tex]\begin{gathered} \tan(90\degree-20\degree) \\ \frac{1}{\tan(20\degree)} \end{gathered}[/tex]

The correct options are B and C

Ver imagen StavrosL694939