Respuesta :

For the given figure:

the dimensions of the sheet are: 28 inches and 16 inches

We will cut 4 squares from the corner, each square of side length = x

Folding up the sides, we will give us a box with the following dimensions:

Length = 28 - 2x

Width = 16 -2x

Height = x

the volume of the box = Length * width * height

So,

[tex]V(x)=x(28-2x)\cdot(16-2x)[/tex]

we will find the values of (x) which make V(x) = 0

so,

[tex]\begin{gathered} x(28-2x)(16-2x)=0 \\ x=0 \\ or,28-2x=0\rightarrow x=\frac{28}{2}=14 \\ or,16-2x=0\rightarrow x=\frac{16}{2}=8 \end{gathered}[/tex]

The possible values will be x = 0 or 8

x = 14 is not possible because it will not be achievable

on the side of length 16

so, the answer will be x = 0, 8