SOLUTION:
Step 1:
We are given that:
For a ride on a rental scooter,
Chris paid a $7 fee to start the scooter plus 7 cents per minute of the ride.
The total bill for Chris's ride was $19.67.
For how many minutes did Chris ride the scooter.
Step 2:
Putting this mathematically, we have that:
[tex]\begin{gathered} Let\text{ x represent the number of minutes, } \\ \text{Then} \\ 7\text{ + }\frac{7}{100}\text{ x = 19.67} \\ \text{Subtract 7 from both sides, we have that:} \\ \frac{7}{100}\text{ x = 19.67 - 7} \\ \frac{7}{100}\text{ x = 12. 67} \\ \end{gathered}[/tex]cross-multiplying, we have that:
[tex]\begin{gathered} 7\text{ x = 12. 67 ( 100)} \\ 7\text{ x = 1267} \\ \text{Divide both sides by 7, we have that:} \\ x\text{ =}\frac{1267}{7} \\ x\text{ = 181 minutes} \end{gathered}[/tex]CONCLUSION:
Chris will need 181 minutes to ride the scooter.