Respuesta :

The vertex of a parabolla can be found by using the following expression:

[tex]x=\frac{-b}{2a}[/tex]

For this parabolla we have:

[tex]x=\frac{-(-10)}{2\cdot1}=\frac{10}{2}=5[/tex]

To find the y-coordinate we can apply the value of x for the vertex and evaluate the expression:

[tex]F(x)=(5)^2-10\cdot5+19=-6[/tex]

The vertex is on the coordinates (5,-6).

The vertex form of a parabola is given by:

[tex]f(x)=d\cdot(x-h)^2+k[/tex]

Where (h,k) are the coordinates of the vertex for the parabolla. For this parabolla we have:

[tex]f(x)=d\cdot(x-5)^2-6[/tex]

To find the value of d we can use the standard expression for the parabolla, as shown below:

[tex]\begin{gathered} f(x)=d\cdot(x^2-10x+25)-6 \\ f(x)=d\cdot x^2-10\cdot d\cdot x+25\cdot d-6 \end{gathered}[/tex]

The value of d must make the expression above equal to the original parabolla. Therefore d must be 1.

[tex]f(x)=(x-5)^2-6[/tex]