Respuesta :

We are given the following system of equations:

[tex]\begin{gathered} x+2y+z=8,(1) \\ 2x+y-z=1,(2) \\ x+y-2z=-3,(3) \end{gathered}[/tex]

To solve the system we will add equations (1) and (2):

[tex]x+2y+z+2x+y-z=8+1[/tex]

Adding like terms:

[tex]\begin{gathered} 3x+3y=9 \\ x+y=3,(4) \end{gathered}[/tex]

Now we multiply equation (2) by -2:

[tex]-4x-2y+2z=-2[/tex]

Now we add this equation to equation (3):

[tex]x+y-2z-4x-2y+2z=-3-2[/tex]

Adding like terms:

[tex]-3x-y=-5,(5)[/tex]

Now we add equations (4) and (5):

[tex]x+y-3x-y=3-5[/tex]

Adding like terms:

[tex]-2x=-2[/tex]

Dividing both sides by -2:

[tex]x=-\frac{2}{-2}=1[/tex]

Now we replace this value of "x" in equation (4):

[tex]\begin{gathered} x+y=3 \\ 1+y=3 \end{gathered}[/tex]

Subtracting 1 to both sides:

[tex]\begin{gathered} 1-1+y=3-1 \\ y=2 \end{gathered}[/tex]

Now we replace the values of "x" and "y" in equation (1):

[tex]\begin{gathered} x+2y+z=8 \\ 1+2(2)+z=8 \end{gathered}[/tex]

Adding like terms:

[tex]\begin{gathered} 1+4+z=8 \\ 5+z=8 \end{gathered}[/tex]

Subtracting 5 to both sides:

[tex]\begin{gathered} 5-5+z=8-5 \\ z=3 \end{gathered}[/tex]

Therefore, the solution of the system is:

[tex]x=1,\text{ y=2, z=3}[/tex]