Respuesta :

SOLUTION

The given function is:

[tex]f(x)=3x^4+2x^3-22x^2-14x+7[/tex]

Recall the rule of rational zero theorem

[tex]\frac{p}{q}=\frac{a\text{ factor of the constant term}}{a\text{ factor of the leading cooficient}}[/tex]

From the given function

The contant term is 7

Factors of the constant term are

[tex]\pm1,\pm7[/tex]

The leading coefficient is 3

Factors of the leading coefficient are

[tex]\pm1,\pm3[/tex]

Using the the rational zero theorem

The posible zeros are

[tex]\frac{\pm1}{\pm3},\frac{\pm1}{\pm1},\frac{\pm7}{\pm3},\frac{\pm7}{\pm1}[/tex]

This gives

[tex]\pm\frac{1}{3},\pm1,\pm\frac{7}{3},\pm7[/tex]

Substitute the possible zeros into the equation to get the actual zeros

The roots are

[tex]\frac{1}{3},-1[/tex]

Factorizing the given function gives

[tex]f(x)=(x+1)(3x-1)(x^2-7)[/tex]