Find f(-6) by using the Remainder Theorem. Show all work and then post it in the next problem.

ANSWER:
f(-6) = 11
STEP-BY-STEP EXPLANATION:
We have the following polynomial:
[tex]f\mleft(x\mright)=x^4+7x^3+8x^2+11x+5[/tex]We calculate the value of f (-6), replacing the value of -6 in the polynomial and then we operate until we find the result:
[tex]\begin{gathered} f(-6)=(-6)^4+7(-6)^3+8(-6)^2+11(-6)+5 \\ f(-6)=1296+7\cdot(-216)^{}+8\cdot(36)+11\cdot(-6)+5 \\ f(-6)=1296-1512^{}+288-66+5 \\ f(-6)=11 \end{gathered}[/tex]