Respuesta :

Step 1: Write out the given parameters

[tex]r=9\operatorname{cm},\text{ }\theta=48^0[/tex]

Step2: Write out the formula

[tex]\begin{gathered} \text{The area of a sector =}\frac{\theta}{360}\times\pi r^2 \\ \end{gathered}[/tex]

then Substitute the value into the formular

[tex]\begin{gathered} \frac{48}{360}\times\pi\times9^2 \\ \frac{3888}{360}\pi \\ =\frac{54}{5}\pi cm^2 \end{gathered}[/tex]

Hence the area of the sector is 54/5πcm² or putting π=3.14

We have

[tex]\frac{54}{5}\times3.14=33.912\operatorname{cm}^2[/tex]

Therefore the area of the sector is 33.912cm²