Find the inverse of the matrix below. You must do this by hand and show all work to earn full credit. Give exact answers. No graphing calculator!

The given matrix is,
[tex]\:A=\:\begin{pmatrix}3&5\\ \:2&4\end{pmatrix}[/tex]Therefore,
[tex]\begin{gathered} \mathrm{Find\:2x2\:matrix\:inverse\:according\:to\:the\:formula}: \\ \begin{equation*} \quad\begin{pmatrix}a\: & \:b\: \\ c\: & \:d\:\end{pmatrix}^{-1}=\frac{1}{\det\begin{pmatrix}a\: & \:b\: \\ c\: & \:d\:\end{pmatrix}}\begin{pmatrix}d\: & \:-b\: \\ -c\: & \:a\:\end{pmatrix} \end{equation*} \\ =\frac{1}{\det \begin{pmatrix}3&5\\ 2&4\end{pmatrix}}\begin{pmatrix}4&-5\\ -2&3\end{pmatrix} \end{gathered}[/tex]Where,
[tex]\begin{gathered} \det\begin{pmatrix}3 & 5 \\ 2 & 4\end{pmatrix}=(3\times4)-(2\times5)=12-10=2 \\ \therefore\det\begin{pmatrix}3 & 5 \\ 2 & 4\end{pmatrix}=2 \end{gathered}[/tex]Hence,
[tex]=\frac{1}{2}\begin{pmatrix}4 & -5 \\ -2 & 3\end{pmatrix}=\begin{pmatrix}\frac{1}{2}\times4 & \frac{1}{2}\times-5 \\ \:\frac{1}{2}\times-2 & \frac{1}{2}\times4\end{pmatrix}=\begin{pmatrix}2 & -\frac{5}{2} \\ -1 & \frac{3}{2}\end{pmatrix}[/tex]Therefore, the answer is
[tex]A^{-1}=\begin{pmatrix}2 & -\frac{5}{2} \\ -1 & \frac{3}{2}\end{pmatrix}[/tex]