Answer:
The perimeter of the parallelogram is;
[tex]8x^2-8x+4[/tex]Explanation:
Given the figure of a parallelogram in the attached image.
With sides;
[tex]\begin{gathered} a=x^2-4x+3 \\ b=3x^2-1 \end{gathered}[/tex]The perimeter of a parallelogram can be calculated using the formula;
[tex]P=2(a+b)[/tex]substituting the given sides;
[tex]\begin{gathered} P=2(a+b) \\ P=2(x^2-4x+3+3x^2-1) \\ P=2(x^2+3x^2-4x+3-1) \\ P=2(4x^2-4x+2) \\ P=8x^2-8x+4 \end{gathered}[/tex]Therefore, the perimeter of the parallelogram is;
[tex]8x^2-8x+4[/tex]