Let's look at some logarithm properties,
[tex]\begin{gathered} p\log _b(M)=\log _b(M^p) \\ \log _b(\frac{M}{N})=\log _bM-\log _bN \\ \log _b(MN)=\log _bM+\log _bN \end{gathered}[/tex]We will use this properties to simplify and write the expression as a single logarithm.
The steps are shown below:
[tex]\begin{gathered} 2\log (x+3)+3\log (x-7)-5\log (x-2)+2\log (x) \\ =\log (x+3)^2+\log (x-7)^3-\log (x-2)^5+\log (x)^2 \\ =\log (\frac{(x+3)^2(x-7)^3(x)^2}{(x-2)^5}) \end{gathered}[/tex]The expression, as a single logarithm, is,
[tex]\log (\frac{(x+3)^2(x-7)^3(x)^2}{(x-2)^5})[/tex]From the answer choices, the correct answer is D.
Answer
D