loga5Rewrite log43++log4 73using properties of logarithms.3A. log, (335)B. loga (72.510)c. loga55D. loga(710 .52)Reset Selection

start by using the property of the logarithm that states
[tex]n\ast log_ab=log_a(b^n)[/tex]then, if we apply the property
[tex]log_43+log_4(5^{\frac{1}{3}})+log_4(7^{\frac{1}{3}})[/tex]since all logarithms have the same base we can apply the property
[tex]log_a(b)+log_a(c)=log_a(b\ast c)[/tex]apply the property
[tex]log_4(3\ast5^{\frac{1}{3}}\ast7^{\frac{1}{3}})[/tex]simplify the product and write the potency as a radical
[tex]\begin{gathered} log_4(3\sqrt[3]{7\ast5}) \\ log_4(3\sqrt[3]{35}) \end{gathered}[/tex]