Respuesta :

[tex]log_43+\frac{1}{3}log_45+\frac{1}{3}log_47[/tex]

start by using the property of the logarithm that states

[tex]n\ast log_ab=log_a(b^n)[/tex]

then, if we apply the property

[tex]log_43+log_4(5^{\frac{1}{3}})+log_4(7^{\frac{1}{3}})[/tex]

since all logarithms have the same base we can apply the property

[tex]log_a(b)+log_a(c)=log_a(b\ast c)[/tex]

apply the property

[tex]log_4(3\ast5^{\frac{1}{3}}\ast7^{\frac{1}{3}})[/tex]

simplify the product and write the potency as a radical

[tex]\begin{gathered} log_4(3\sqrt[3]{7\ast5}) \\ log_4(3\sqrt[3]{35}) \end{gathered}[/tex]