Respuesta :

Given: A function

[tex]f(x)=3x+1[/tex]

Required: To find the inverse of the given function.

Explanation: We will use the concept of inverse functions to find out the inverse of f(x). Let

[tex]\begin{gathered} f(x)=y \\ y=3x+1 \end{gathered}[/tex]

Interchange x and y,

[tex]x=3y+1[/tex]

Now express y in terms of x as follows

[tex]y=\frac{x-1}{3}[/tex]

From the definition of an inverse function,

[tex]f(x)=y\Rightarrow x=f^{-1}(y)[/tex]

Therefore,

[tex]f^{-1}(y)=\frac{x-1}{3}[/tex]

Thus the inverse of y=3x+1 is

[tex]f^{-1}(x)=\frac{x-1}{3}[/tex]

Final Answer:

[tex]f^{-1}(x)=\frac{x-1}{3}[/tex]