For each equation chose the statement that describes its solution if applicable give the solution

Isolate the variable from each equation to find the solution. If the algebraic process leads to an identity, all real numbers are solutions. If the algebraic process leads to a contradiction, there is no solution.
Part 1)
[tex]\begin{gathered} 3(u-2)-4u=2(u-9) \\ \\ \Rightarrow\qquad3u-6-4u=2u-18 \\ \\ \Rightarrow\qquad-u-6=2u-18 \\ \\ \Rightarrow\qquad-u-2u=-18+6 \\ \\ \Rightarrow\qquad-3u=-12 \\ \\ \Rightarrow\qquad u=\frac{-12}{-3} \\ \\ \therefore\quad u=4 \end{gathered}[/tex]Therefore, the solution is: u=4.
Part 2)
[tex]\begin{gathered} 2(v+1)+4v=3(2v-1)+8 \\ \\ \Rightarrow\qquad2v+2+4v=6v-3+8 \\ \\ \Rightarrow\qquad6v+2=6v+5 \\ \\ \Rightarrow\qquad6v-6v=5-2 \\ \\ \Rightarrow\qquad0=3\;\;! \end{gathered}[/tex]Therefore, there is no solution.