Use Midpoint and Slope Formulas to complete the tables below.1. Find the midpoint of RP, given the coordinates R (5, 8) and P (3, 6).m:Il m:I m:Midpoint:

Respuesta :

The midpoint formula for a segment is:

[tex]x_m,y_{_m}=\frac{(x_1+x_2)}{2},\frac{(y_1+y_2)}{2}[/tex]

apply to points R and P

[tex]\begin{gathered} x_m,y_m=\frac{(5+3)}{2},\frac{(8+6)}{2} \\ x_m,y_m=\frac{8}{2},\frac{14}{2} \\ x_m,y_m=(4,7) \end{gathered}[/tex]

using the definition of slope find the slope of the segment

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

apply to points R and P

[tex]\begin{gathered} m=\frac{8-6}{5-3} \\ m=\frac{2}{2} \\ m=1 \end{gathered}[/tex]

to lines are parallel when the slopes are the same

[tex]\mleft\Vert m=1\mright?[/tex]

two lines are perpendicular when the product of the slopes is equal to -1

[tex]\begin{gathered} m\cdot\perp m=-1 \\ 1\cdot\perp m=-1 \\ \perp m=-\frac{1}{1} \\ \perp m=-1 \end{gathered}[/tex]