Respuesta :

37)

[tex]\frac{\sec x}{\tan x+\cot x}[/tex]

First, we will simplify the denominator

tanx + cot x

tanx = sinx/cosx and cotx = cosx / sinx

[tex]\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{\sin ^2x+\cos ^2x}{\text{cosxsinx}}[/tex]

sin²x +cos²x = 1

[tex]=\frac{1}{\cos x\sin x}[/tex]

substitute back to the original expression

[tex]\frac{\sec x}{\cos x\sin x}[/tex]

but secx = 1/cosx

[tex]\frac{1}{\cos x}dividedby\frac{1}{\cos x\sin x}[/tex][tex]=\frac{1}{\cos x}\times\cos x\sin x[/tex]

[tex]=\sin x[/tex]

39)

[tex]\frac{1-\sin ^2x}{\cos x}[/tex]

1 - sin²x = cos²x

substitute the above into the original expression

[tex]\frac{\cos ^2x}{\cos x}[/tex]

[tex]=\cos \text{ x}[/tex]

40)

[tex]\frac{\csc ^2x-1}{\csc ^2x}[/tex]

csc²x - 1 = cot²x

substitute the above into the original expression

[tex]\frac{\cot^2x}{\csc^2x}[/tex]

But 1 + tan²x = cot²x

1 + tan²x

= 1 + sin²x/cos²x

= sin²x+cos²x /cos²x

=1 /cos²x

substitute into the expression

[tex]\frac{\frac{1}{\cos^2x}}{\csc ^2x}[/tex]

1/cos²x ÷ csc²x

but csc²x = 1/sin²x

1/cos²x ÷ 1/sin²x

1/cos²x (sin²x)

[tex]\frac{\sin ^2x}{\cos ^2x}[/tex]

[tex]=\tan ^2x[/tex]

38)

[tex]\frac{1+\sin x}{\cos x}+\frac{\cos x}{\sin x-1}[/tex]

Find the lcm

[tex]\frac{(\sin x-1)(1+\sin x)+(\cos x)(\cos x)}{\cos x(\sin x-1)}[/tex]

[tex]\frac{\sin x+\sin ^2x-1-\sin x+\cos ^2x}{\cos x(\sin x-1)}[/tex]

Re-arrange the numerator

[tex]\frac{\sin x-\sin x-1+\sin ^2x+\cos ^2x}{\cos x(\sin x-1)}[/tex][tex]\frac{-1+\sin ^2x+\cos ^2x}{\cos x(\sin x-1)}[/tex]

But, sin²x+cos²x=1

[tex]\frac{-1+1}{\cos x(\sin x-1)}[/tex]

= 0