Respuesta :

To begin with, let us first write out the formula for the exponential form

[tex]y=b^{rt}[/tex]

Given the initial parametrs

[tex]y=14b^t^{}[/tex]

Thus

[tex]145^9=7[/tex]

[tex]b^{-9}=\frac{1}{2}[/tex]

Using exponential laws

[tex]b=\frac{1}{(\frac{1}{2})^{\frac{1}{-\frac{1}{9}}}}[/tex]

W will soon see that

[tex]b=2^{\frac{1}{9}}[/tex]

Hence after 13 years, the substance left will be;

[tex]\begin{gathered} 14(2^{\frac{1}{9}})^{-13}=5.144070729 \\ \approx5.144g \end{gathered}[/tex]