Let be two sets E and F such that:E = {x € R: -4 ≤ x ≤ 4}F = {x € R: | x | = x}What is the complement of E?Make the product between the complementary of E and F

Respuesta :

Recall that:

[tex]E^c=\mleft\lbrace x\in\R\colon x\notin E\mright\rbrace\text{.}[/tex]

Since

[tex]E=\mleft\lbrace x\in\R\colon-4\le x\le4\mright\rbrace\text{.}[/tex]

Therefore:

[tex]\begin{gathered} E^c=\mleft\lbrace x\in\R\colon x\notin E\mright\rbrace=\lbrace x\in\R\colon x<-4\text{ or x>4}\} \\ =\mleft\lbrace x\in\R\colon x<-4\mright\rbrace\cup\lbrace x\in\R\colon x>4\rbrace\text{.} \end{gathered}[/tex]

Now, the cartesian product between the complementary of E and F is:

[tex]E^c\times F=(\lbrace x\in\R\colon x<-4\rbrace\cup\lbrace x\in\R\colon x>4\rbrace)\times(\mleft\lbrace x\in\R\colon\mright|x|=x\})\text{.}[/tex]

Now, recall that:

[tex]\begin{gathered} |x|=x\text{ if and only if x}\ge0, \\ (A\cup B)\times C=A\times C\cup B\times C. \end{gathered}[/tex]

Therefore:

[tex]E^c\times F=(\lbrace x\in\R\colon x<-4\rbrace\times\lbrace x\in\R\colon x\ge0\})\cup(\lbrace x\in\R\colon x>4\rbrace)\times\lbrace x\in\R\colon x\ge0\})\text{.}[/tex]

Answer:

[tex]\begin{gathered} E^c=\lbrace x\in\R\colon x<-4\rbrace\cup\lbrace x\in\R\colon x>4\rbrace\text{.} \\ E^c\times F=(\lbrace x\in\R\colon x<-4\rbrace\times\lbrace x\in\R\colon x\ge0\})\cup(\lbrace x\in\R\colon x>4\rbrace)\times\lbrace x\in\R\colon x\ge0\})\text{.} \end{gathered}[/tex]