Graph a right triangle with the two points forming the hypotenuse. Using the sides, find the distance between the two points, to the nearest tenth (if necessary).(5,−2) and (7,7)

Respuesta :

Step 1

Given;

[tex]\text{The points (3,8) and (6,4)}[/tex]

Required;

[tex]\begin{gathered} To\text{ use the points and} \\ 1)\text{ form a right-angled triangle} \\ 2)Find\text{ the distance betwe}en\text{ the points } \end{gathered}[/tex]

Step 2

Draw the triangle

Step 3

Find the distance between the two points

[tex]\begin{gathered} D=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ D=\sqrt[]{(7-5)^2+(7-(-2))^2} \\ D=\sqrt[]{4+81} \\ D=\sqrt[]{85} \\ D\approx9.2\text{ units to the nearest tenth} \end{gathered}[/tex]

Hence the distance between the two points to the nearest tenth is approximately 9.2 units.

Ver imagen AshvikL90413