Respuesta :
Answer:
2003.85
Step-by-step explanation:
I realize I'm a year late, but the math of the previous answer was so terrible I'm honestly too horrified to let this be.
You have save by an increasing amount of 3 pennies per day. You start with 3 and build from that, each day, for 365 days. First, you must figure out what amount of pennies you shoved into your account on the final 365th day.
An= a1+(n-1)d
An=term you want
a1= term you begin with
n= term you want
d= constant amount
A_365= 3 + (365-1)*3
A_365= 1095
Arithmetic Sum: Sn = N/2 (a1 + an)
365/2 * (3 + 1095) = 200385.
This means you've invested a total of 200385 PENNIES after 365 days.
The question asks for dollars, not your rusting lincoln's.
As (I hope) you know, 1 Dollar = 100 pennies
200385 pennies/100 = 2003.85.
This means you have $2003.85 in your account by the conclusion of the 365th day.
The correct answer is $2003.85
What is Arithmetic Progression?
- The sequence of numbers in algebra such that the difference between every consecutive term is the same.
How to solve the problem?
The problem can be solved by following steps
- Saving three pennies on January 1 n = 3
- Saving six pennies on January 2 n = 6
- Saving nine pennies on January 3 n = 9
The series continues till one year containing 365 days and not a leap year
3+6+9+-----------+365
= 3(1+2+3+--------------+365)
Lets add the same number but in different order
(1+2+3+4+----------+365)+(365+364+-------------------+3+2+1)
= (1+365)+(2+364)+(3+363)+ … +(364+2)+(365+1)
= n(n+1)
= 365 (365+1)
=365 *366
= 133590
We have exactly 365 pairs
So , (1+2+3+4+ … +365)=[tex]\frac{366*365}{2} = 66795[/tex]
Now, Multiplying the equation with 3 as we took 3 as common factor before
Therefore
66795*3 = 200385
Expressing answer in decimal form will be $2003.85
Learn more about AP here
https://brainly.com/question/24205483
#SPJ2