1. Given that sinθ=x4.

Which expression represents θ in terms of x?


a. arcsin(x4)

b. sin(x4)

c. arccos(x4)

d. cos(x4)

2. What is the value of arcsin(√3/2) in degrees?

3. What is the value of arcsin(−3√2)?
Thank you so much for attempting/answering these...

Respuesta :

Hope this helps you.
Ver imagen AbhiGhost

Answer:

Part 1) option a [tex]\theta=arcsin(x^{4})[/tex]

Part 2) [tex]60\°[/tex]

Part 3) [tex]-60\°[/tex]

Step-by-step explanation:

Part 1) Which expression represents θ in terms of x?

we have

[tex]sin(\theta)=x^{4}[/tex]

so

[tex]\theta=sin^{-1}(x^{4})=arcsin(x^{4})[/tex]

Part 2) What is the value of arcsin(√3/2) in degrees?

Let

[tex]\theta[/tex] ----> the angle

we know that

[tex]sin(\theta)=\sqrt{3}/2[/tex]

[tex]\theta=arcsin(\sqrt{3}/2)=60\°[/tex]

Part 3) What is the value of arcsin(-√3/2) in degrees?

Let

[tex]\theta[/tex] ----> the angle

we know that

[tex]sin(\theta)=-\sqrt{3}/2[/tex]

[tex]\theta=arcsin(-\sqrt{3}/2)=-60\°[/tex]