Answer:
25.4 L
Step-by-step explanation:
Charles's Law
[tex]\sf \dfrac{V_1}{T_1}=\dfrac{V_2}{T_2}\quad \textsf{(when pressure is constant and temperature is in kelvin)}[/tex]
where:
Given:
Convert Celsius to kelvin.
Kelvin = Celsius + 273.15
[tex]\implies \sf T_1= 25 + 273.15 = 298.15 \;K[/tex]
[tex]\implies \sf T_2 = 30 + 273.15 = 303.15\; K[/tex]
Substitute the given values into the formula:
[tex]\implies \sf \dfrac{25}{298.15}=\dfrac{V_2}{303.15}[/tex]
[tex]\implies \sf V_2 =303.15 \cdot \dfrac{25}{298.15}[/tex]
[tex]\implies \sf V_2 =\dfrac{7478.75}{298.15}[/tex]
[tex]\implies \sf V_2 =25.41925205...L[/tex]
Therefore, the volume of air in the tire if the temperature increases to 30.0 °C is 25.4 L (nearest tenth).