Suppoe the domain of the propoitional functionP (x, y) conit of pair x and y, where x i 1, 2, or 3 and y i 1, 2, or 3. Write out thee propoition uing dijunction and conjunction. A) ∀x∀yP (x, y) b) ∃x∃yP (x, y) c) ∃x∀yP (x, y) d) ∀y∃xP (x, y)

Respuesta :

These are the preposition for the given conditions:

(P(1,1) ∧ P(1,2) ∧ P(1,3)) ∧ (P(2,1) ∧ P(2,2) ∧ P(2,3)) ∧ (P(3,1) ∧ P(3,2) ∧ P(3,3)).

(P(1,1) ∨ P(1,2) ∨ P(1,3)) ∨ (P(2,1) ∨ P(2,2) ∨ P(2,3)) ∨ (P(3,1) ∨ P(3,2) ∨ P(3,3)).

(P(1,1) ∨ P(1,2) ∨ P(1,3)) ∧ (P(2,1) ∨ P(2,2) ∨ P(2,3)) ∧ (P(3,1) ∨ P(3,2) ∨ P(3,3)).

(P(1,1) ∧ P(1,2) ∧ P(1,3)) v (P(2,1) ∧ P(2,2) ∧ P(2,3)) v (P(3,1) ∧ P(3,2) ∧ P(3,3)).

The domain of the propositional P(x, y) consists of pairs x and y, where x is 1, 2, 3 and y is 1, 2, 3.

What are the disjunction and conjunction?

In logic functions, there are two kinds of compound statements. These are referred to as conjunction and disjunction. A conjunction implies that both statements are correct, whereas a disjunction implies that at least one of the statements is correct. A conjunction connects statements with the word "and," whereas a disjunction connects statements with the word "or."

By using disjunction and conjunction we get,

a) ∀x∀y P(x, y) is written as:

(P(1,1) ∧ P(1,2) ∧ P(1,3)) ∧ (P(2,1) ∧ P(2,2) ∧ P(2,3)) ∧ (P(3,1) ∧ P(3,2) ∧ P(3,3)).

b) ∃x ∃y P (x, y) is written as:

(P(1,1) ∨ P(1,2) ∨ P(1,3)) ∨ (P(2,1) ∨ P(2,2) ∨ P(2,3)) ∨ (P(3,1) ∨ P(3,2) ∨ P(3,3)).

c) ∃x∀y P(x, y)  is written as:

(P(1,1) ∨ P(1,2) ∨ P(1,3)) ∧ (P(2,1) ∨ P(2,2) ∨ P(2,3)) ∧ (P(3,1) ∨ P(3,2) ∨ P(3,3)).

d) ∀y∃x P(x, y)  is written as:

(P(1,1) ∧ P(1,2) ∧ P(1,3)) v (P(2,1) ∧ P(2,2) ∧ P(2,3)) v (P(3,1) ∧ P(3,2) ∧ P(3,3)).

Hence, these are the preposition for the given conditions:

(P(1,1) ∧ P(1,2) ∧ P(1,3)) ∧ (P(2,1) ∧ P(2,2) ∧ P(2,3)) ∧ (P(3,1) ∧ P(3,2) ∧ P(3,3)).

(P(1,1) ∨ P(1,2) ∨ P(1,3)) ∨ (P(2,1) ∨ P(2,2) ∨ P(2,3)) ∨ (P(3,1) ∨ P(3,2) ∨ P(3,3)).

(P(1,1) ∨ P(1,2) ∨ P(1,3)) ∧ (P(2,1) ∨ P(2,2) ∨ P(2,3)) ∧ (P(3,1) ∨ P(3,2) ∨ P(3,3)).

(P(1,1) ∧ P(1,2) ∧ P(1,3)) v (P(2,1) ∧ P(2,2) ∧ P(2,3)) v (P(3,1) ∧ P(3,2) ∧ P(3,3)).

To learn more about the disjunction and conjunction visit,

https://brainly.com/question/1511319

#SPJ4