(1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y" 4y sec(2z). a. Find the most general solution to the associated homogeneous differential equation. Use c and c2 in your answer to denote arbitrary constants, and enter them as c1 and c2 b. Find a particular solution to the nonhomogeneous differential equation y" +4y sec(2). c. Find the most general solution to the original nonhomogeneous differential equation. Use ci and c2 in your answer to denote arbitrary constants.

Respuesta :

The general solution of equation y''+4y=sec(2z) is

y = c₁cos2z + c₂sin2z + [tex]\frac{cos2z}{4}[/tex] ln(cos2z) + [tex]\frac{z sin2z}{2}[/tex].

Given differential equation is,

y'' + 4y = sec(2z)

Characteristic equation of this equation is

(D²+4)=0

⇒ D² = -4

    D =  ±2i

Therefore the roots are imaginary.

D₁=2i ⇒ y₁ = e⁰cos2z = cos2z

D₂=-2I⇒ y₂ = e⁰sin2z = sin2z

yn= c₁cos2z + c₂sin2z

Noe to solve yp, first we need to solve Wronskian

y₁= cos2z ,   y₂=sin2z

y₁'= -2sin2z , y₂'=2cos2z

⇒ W = [tex]\left[\begin{array}{ccc}y1&y2\\y1'&y2'\\\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}cos2z&sin2z\\-2sin2z&2cos2z\\\end{array}\right][/tex]

                              = (cos2z)(2cos2z)-(-2sin2z)(sin2z)

                              = 2cos²2z + 2sin²2z

                              =2 (cos²2z + sin²2z)

                              = 2 ≠ 0

yp = - y₁[tex]\int\ {\frac{y2 g(z)}{W} } \, dz[/tex] + y₂[tex]\int\ {\frac{y1 g(z)}{W} } \, dz[/tex]

    = -(cos2z)[tex]\int\ {\frac{(sin2z)(sec2z)}{2} } \, dz[/tex] + (sin2z)[tex]\int\ {\frac{(cos2z)(sec2z)}{2} } \, dz[/tex]

    = - (cos2z)[tex]\int\ {\frac{sin2z/cos2z}{2} } \, dz[/tex] + (sin2z)[tex]\int\ {\frac{cos2z/cos2z}{2} } \, dz[/tex]

    = - [tex]\frac{cos2z}{2}[/tex][tex]\int\ {tan2z} \, dz[/tex] + [tex]\frac{sin2z}{2}[/tex][tex]\int\ \,dz[/tex]

    =  - [tex]\frac{cos2z}{2}[/tex](-[tex]\frac{1}{2}[/tex] ln (cos2z)) + [tex]\frac{sin2z}{2}[/tex] (z)

    =  [tex]\frac{cos2z}{4}[/tex]ln(cos2z) + [tex]\frac{zsin2z}{2}[/tex]

   

Now the general equation will become

y = yn + yp

y = c₁cos2z + c₂sin2z +[tex]\frac{cos2z}{4}[/tex]ln(cos2z) + [tex]\frac{zsin2z}{2}[/tex]    .

To know more about Wronsian here

https://brainly.com/question/16930425

#SPJ4