Respuesta :
Answer: x = 6/5 ; or, write as: "1 1/5" ; or,write as: "1.2" ;
x = 39/37 = 1 2/37 = 1.0540540540540541 .
__________________________________________________
Explanation:
__________________________________________________
Given:
9|9−8x|=2x+3 ; Solve for "x" ;
_________________________________________
DIvide EACH side of the equation by "9" ;
_________________________________________
{ 9|9−8x| } / 9 = { 2x + 3 } / 9 ;
_________________________________________
to get:
_________________________________
|9−8x| = (2x + 3) / 9 ;
_________________________________
Given the "absolute value" on the left-hand side; we have
"Case 1" and "Case 2" scenarios:
__________________________________
Case 1:
________________________________
9 − 8x = (2x+ 3) / 9 ;
↔ -8x + 9 = (2x+ 3) / 9 ;
________________________________
Case 2:
________________________________
- (9 − 8x) = -9 + 8x = 8x − 9 ;
↔ 8x − 9 = (2x + 3) / 9
________________________________
Let us start with "Case 1" :
________________________________
-8x + 9 = (2x + 3) / 9 ;
→ 9*(-8x + 9) = 2x + 3 ;
→ -72x + 81 = 2x + 3 ;
→ Subtract "81" ; and "2x" from EACH side of the equation ;
___________________________________________________
→ -72x + 81 − 81 − 2x = 2x + 3 − 81 − 2x ;
___________________________________________________
to get: -74x = -78 ;
__________________________________________________
Divide EACH side of the equation by "-74" ; to isolate "x" on one side of the equation; and to solve for "x" ;
___________________________________________________
-74x / -74 = -78/-74 ;
___________________________________________________
x = 78/74 = 39/37 = 1 2/37 ; or, 1.0540540540540541 .
_____________________________________________________
Now, let's continue with: "Case 2" :
___________________________________
8x − 9 = (2x + 3) / 9 ;
→ 9*(8x − 9) = 2x + 3 ;
→ 72x − 81 = 2x + 3 ;
___________________________________________________
Subtract "2x" ; and add "81" ; to BOTH sides of the equation:
___________________________________________________
→ 72x − 81 − 2x + 81 = 2x + 3 − 2x + 81 ;
___________________________________________________
to get: → 70x = 84 ;
___________________________________________________
Divide EACH side of the equation by "70" ; to isolate "x" on one side of the equation; and to solve for "x" ;
________________________________________________
→ 70x / 70 = 84 / 70 ;
________________________________________________
→ x = 6/5 = 1 1/5 = 1.2
________________________________________________
x = 39/37 = 1 2/37 = 1.0540540540540541 .
__________________________________________________
Explanation:
__________________________________________________
Given:
9|9−8x|=2x+3 ; Solve for "x" ;
_________________________________________
DIvide EACH side of the equation by "9" ;
_________________________________________
{ 9|9−8x| } / 9 = { 2x + 3 } / 9 ;
_________________________________________
to get:
_________________________________
|9−8x| = (2x + 3) / 9 ;
_________________________________
Given the "absolute value" on the left-hand side; we have
"Case 1" and "Case 2" scenarios:
__________________________________
Case 1:
________________________________
9 − 8x = (2x+ 3) / 9 ;
↔ -8x + 9 = (2x+ 3) / 9 ;
________________________________
Case 2:
________________________________
- (9 − 8x) = -9 + 8x = 8x − 9 ;
↔ 8x − 9 = (2x + 3) / 9
________________________________
Let us start with "Case 1" :
________________________________
-8x + 9 = (2x + 3) / 9 ;
→ 9*(-8x + 9) = 2x + 3 ;
→ -72x + 81 = 2x + 3 ;
→ Subtract "81" ; and "2x" from EACH side of the equation ;
___________________________________________________
→ -72x + 81 − 81 − 2x = 2x + 3 − 81 − 2x ;
___________________________________________________
to get: -74x = -78 ;
__________________________________________________
Divide EACH side of the equation by "-74" ; to isolate "x" on one side of the equation; and to solve for "x" ;
___________________________________________________
-74x / -74 = -78/-74 ;
___________________________________________________
x = 78/74 = 39/37 = 1 2/37 ; or, 1.0540540540540541 .
_____________________________________________________
Now, let's continue with: "Case 2" :
___________________________________
8x − 9 = (2x + 3) / 9 ;
→ 9*(8x − 9) = 2x + 3 ;
→ 72x − 81 = 2x + 3 ;
___________________________________________________
Subtract "2x" ; and add "81" ; to BOTH sides of the equation:
___________________________________________________
→ 72x − 81 − 2x + 81 = 2x + 3 − 2x + 81 ;
___________________________________________________
to get: → 70x = 84 ;
___________________________________________________
Divide EACH side of the equation by "70" ; to isolate "x" on one side of the equation; and to solve for "x" ;
________________________________________________
→ 70x / 70 = 84 / 70 ;
________________________________________________
→ x = 6/5 = 1 1/5 = 1.2
________________________________________________
³⁹/₃₇ and ⁶/₅
Further explanation
For any real number x, the absolute value of x is denoted by | x | and
[tex]\boxed{ \ |x| = \left \{ {{x, \ x \geq 0 } \atop {-x, \ x < 0}} \right. \ }[/tex]
Our case is given by:
[tex]\boxed{ \ 9|9 - 8x| = 2x + 3 \ }[/tex]
Part-1
[tex]\boxed{ \ 9(9 - 8x) = 2x + 3 \ }[/tex]
[tex]\boxed{ \ 81 - 72x = 2x + 3 \ }[/tex]
[tex]\boxed{ \ - 2x - 72x = 3 - 81 \ }[/tex]
[tex]\boxed{ \ - 74x = - 78 \ }[/tex]
[tex]\boxed{ \ x = \frac{-78}{-74} \rightarrow \frac{divided \ by \ (-2)}{divided \ by \ (-2)} \rightarrow \boxed{ \ x = \frac{39}{37} \ } \ }[/tex]
Part-2
[tex]\boxed{ \ - 9(9 - 8x) = 2x + 3 \ }[/tex]
[tex]\boxed{ \ - 81 + 72x = 2x + 3 \ }[/tex]
[tex]\boxed{ \ 72x - 2x = 3 + 81 \ }[/tex]
[tex]\boxed{ \ 70x = 84 \ }[/tex]
[tex]\boxed{ \ x = \frac{84}{70} \rightarrow \frac{divided \ by \ 14}{divided \ by \ 14} \rightarrow \boxed{ \ x = \frac{6}{5} \ } \ }[/tex]
Thus, the solution is [tex]\boxed{ \ x = \frac{39}{37} \ or \ x = \frac{6}{5}. \ }[/tex]
Learn more
- A linear programming problem https://brainly.com/question/3799248
- Does Marcus pay tax? https://brainly.com/question/11018983
- About complex numbers https://brainly.com/question/1658190
Keywords: solve the equation, the absolute value, check for extraneous solutions, 9|9 - 8x| = 2x + 3, the solution