Respuesta :

[tex]f(x)=\tan(2x+3)[/tex]

The derivative is given by the limit

[tex]f'(x)=\displaystyle\lim_{h\to0}\frac{f(x+h)-f(x)}h[/tex]

You have

[tex]\displaystyle\lim_{h\to0}\frac{\tan(2(x+h)+3)-\tan(2x+3)}h[/tex]
[tex]\displaystyle\lim_{h\to0}\frac{\tan((2x+3)+2h)-\tan(2x+3)}h[/tex]

Use the angle sum identity for tangent. I don't remember it off the top of my head, but I do remember the ones for (co)sine.

[tex]\tan(a+b)=\dfrac{\sin(a+b)}{\cos(a+b)}=\dfrac{\sin a\cos b+\cos a\sin b}{\cos a\cos b-\sin a\sin b}=\dfrac{\tan a+\tan b}{1-\tan a\tan b}[/tex]

By this identity, you have

[tex]\tan((2x+3)+2h)=\dfrac{\tan(2x+3)+\tan2h}{1-\tan(2x+3)\tan2h}[/tex]

So in the limit you get

[tex]\displaystyle\lim_{h\to0}\frac{\dfrac{\tan(2x+3)+\tan2h}{1-\tan(2x+3)\tan2h}-\tan(2x+3)}h[/tex]
[tex]\displaystyle\lim_{h\to0}\frac{\tan(2x+3)+\tan2h-\tan(2x+3)(1-\tan(2x+3)\tan2h)}{h(1-\tan(2x+3)\tan2h)}[/tex]
[tex]\displaystyle\lim_{h\to0}\frac{\tan2h+\tan^2(2x+3)\tan2h}{h(1-\tan(2x+3)\tan2h)}[/tex]
[tex]\displaystyle\lim_{h\to0}\frac{\tan2h}h\times\lim_{h\to0}\frac{1+\tan^2(2x+3)}{1-\tan(2x+3)\tan2h}[/tex]
[tex]\displaystyle\frac12\lim_{h\to0}\frac1{\cos2h}\times\lim_{h\to0}\frac{\sin2h}{2h}\times\lim_{h\to0}\frac{\sec^2(2x+3)}{1-\tan(2x+3)\tan2h}[/tex]

The first two limits are both 1, and the single term in the last limit approaches 0 as [tex]h\to0[/tex], so you're left with

[tex]f'(x)=\dfrac12\sec^2(2x+3)[/tex]

which agrees with the result you get from applying the chain rule.