Answer: [tex]20\pi in^3[/tex]
Step-by-step explanation:
For cylinder
Given: Height = 3 cm
Diameter =4 cm
Therefore, Radius = 2 cm
We know that the volume of cylinder is given by :_
[tex]\text{Volume}=\pi r^2h\\\\\Rightarrow\ \text{Volume}=\pi\times(2)^2\times3\\\\\Rightarrow\ \text{Volume}=12\pi\ cm^3[/tex]
For cone,
Height of cone =3 cm
Radius = 2 cm (same as cylinder)
We know that the volume of cone is given by :_
[tex]\text{Volume}=\frac{1}{3}\pi r^2h\\\\\Rightarrow\ \text{Volume}=\frac{1}{3}\times\pi\times(2)^2\times3\\\\\Rightarrow\ \text{Volume}=4\pi\ cm^3[/tex]
The volume of figure = Volume of cylinder +Volume of 2 cones
[tex]12\pi+2(4\pi)=12\pi+8\pi=20\pi in^3[/tex]