Respuesta :

Answer-

[tex]\mathbf{x + 2y = 0}[/tex] has a slope of [tex]-\dfrac{1}{2}[/tex]

Solution-

The general point slope formula of straight line,

[tex]y=mx+c[/tex]

Where,

m = slope

c = y-intercept

[tex]\mathbf{x + 2y = 0}[/tex]

[tex]\Rightarrow y=-\dfrac{x}{2}[/tex]

Comparing with general equation, slope = [tex]-\dfrac{1}{2}[/tex]

[tex]\mathbf{x - 2y = 0}[/tex]

[tex]\Rightarrow y=\dfrac{x}{2}[/tex]

Comparing with general equation, slope = [tex]\dfrac{1}{2}[/tex]

[tex]\mathbf{-x + 2y = 0}[/tex]

[tex]\Rightarrow y=\dfrac{x}{2}[/tex]

Comparing with general equation, slope = [tex]\dfrac{1}{2}[/tex]

[tex]\mathbf{y = x -\dfrac{1}{2}}[/tex]

Comparing with general equation, slope = 1, y-intercept = [tex]-\dfrac{1}{2}[/tex]

Therefore, [tex]\mathbf{x + 2y = 0}[/tex] has a slope of [tex]-\dfrac{1}{2}[/tex]


Answer:

A.) x + 2y = 0

Step-by-step explanation: