a stone is thrown upward from ground level with what minimum speed should the stone be thrown so as to reach a height of 9 feet?

***This is a calculus problem NOT a physics one. I need help figuring out how to solve this using the equation h(t)=-16t^2-vt-h
Thank you!

Respuesta :

The stone should be thrown with minimum speed 24 feet/s so as to reach a height of 9 feet

Further explanation

To solve this problem there are several basic principles in Derivatives that need to be recalled, namely:

[tex]y = a ~ x^n \Rightarrow \frac{dy}{dx} = a ~ n ~ x^{n-1}[/tex]

[tex]y = \sin x \Rightarrow \frac{dy}{dx} = \cos x[/tex]

[tex]y = \cos x \Rightarrow \frac{dy}{dx} = - \sin x[/tex]

[tex]y = u \times v \Rightarrow \frac{dy}{dx} = u' \times v + u \times v'[/tex]

[tex]y = u \div v \Rightarrow \frac{dy}{dx} = \frac{u' \times v - u \times v'}{v^2}[/tex]

[tex]y = u^n \Rightarrow \frac{dy}{dx} = n \times u^{n-1} \times u'[/tex]

[tex]\text{where u and v are functions in variable x}

[/tex]

[tex]\text{and u 'and v' are derivatives of u and v}[/tex]

Let us now tackle the problem !

Given:

[tex]h(t) = -16t^2 + v_ot + h_o[/tex]

The stone is thrown upward from ground level → h o = 0

[tex]h(t) = -16t^2 + v_ot + 0[/tex]

[tex]h(t) = -16t^2 + v_ot[/tex]

We will differentiate above equation to get the instantenous velocity of the stone.

[tex]v(t) = \frac{dh(t)}{dt}[/tex]

[tex]v(t) = \frac{d}{dt} (-16t^2 + v_ot )[/tex]

[tex]v(t) = -16(2t^{2-1}) + v_o[/tex]

[tex]v(t) = -32t + v_o[/tex]

At maximum height → v(t) = 0

[tex]v(t) = -32t + v_o[/tex]

[tex]0 = -32t + v_o[/tex]

[tex]32t = v_o[/tex]

[tex]t = \boxed {\frac{v_o}{32}}[/tex] → Equation 1

Let the maximum height h(t) = 9 feet , then :

[tex]h(t) = -16t^2 + v_ot[/tex]

[tex]9 = -16( \frac{v_o}{32} )^2 + v_o( \frac{v_o}{32} )[/tex] ← Equation 1

[tex]9 = -\frac{v_o^2}{64} + \frac{v_o^2}{32}[/tex]

[tex]9 = \frac{v_o^2}{64}[/tex]

[tex]v_o^2 = 9 \times 64[/tex]

[tex]v_o = \sqrt{576}[/tex]

[tex]v_o = \boxed {24 ~ feet/s}[/tex]

Learn more

  • Implicit Differentiation : https://brainly.com/question/4711711
  • Logarithmic Differentiation : https://brainly.com/question/9226310
  • Calculus Problem : https://brainly.com/question/11237537

Answer details

Grade: High School

Subject: Mathematics

Chapter: Differentiation

Keywords: Maximum , Minimum , Value , Function , Variable , Derivation , Differentiation

Ver imagen johanrusli

The minimum speed to reach a height of 9 feet is 24 feet per second

The height function is given as:

[tex]h(t) = -16t^2 +vt[/tex]

Differentiate the above function

[tex]h'(t) = -32t +v[/tex]

Set to 0

[tex]-32t +v = 0[/tex]

Subtract v from both sides

[tex]-32t = -v[/tex]

Divide both sides by -32

[tex]t = \frac{v}{32}[/tex]

The maximum height is given as: 9 ft.

At this point, the value of t is [tex]\frac{v}{32}[/tex]

i.e.

[tex]h(\frac{v}{32}) = 9[/tex]

So, we have:

[tex]9 = -16(\frac{v}{32})^2 +(\frac{v}{32})v[/tex]

Expand

[tex]9 = -16(\frac{v^2}{1024}) +(\frac{v}{32})v[/tex]

[tex]9 = -\frac{v^2}{64} +(\frac{v}{32})v[/tex]

Expand the brackets

[tex]9 = -\frac{v^2}{64} +\frac{v^2}{32}[/tex]

Take LCM

[tex]9 = \frac{-v^2 + 2v^2}{64}[/tex]

[tex]9 = \frac{v^2}{64}[/tex]

Multiply both sides by 64

[tex]v^2= 64 \times9[/tex]

Take square roots of both sides

[tex]v= 8 \times3[/tex]

[tex]v= 24[/tex]

Hence, the minimum speed to reach a height of 9 feet is 24 feet per second

Read more about speed and distance at:

https://brainly.com/question/4931057