Respuesta :

It should be prime :DDD

Answer:

Option 3 - The given equation is a prime.

Step-by-step explanation:

Given : Quadratic equation [tex]3x^2+x+7=0[/tex]

To find : The factors of given equation.

Solution : To factories the given equation [tex]3x^2+x+7=0[/tex]

We will apply discriminant method

General form - [tex]ax^2+bx+c=0[/tex]

[tex]D=b^2-4ac[/tex]

Solution is [tex]x=\frac{-b\pm\sqrt{D}}{2a}[/tex]

Equation is [tex]3x^2+x+7=0[/tex]

where a=3 , b=1, c=7

[tex]D=b^2-4ac[/tex]

[tex]D=(1)^2-4(3)(7)[/tex]

[tex]D=1-84[/tex]

[tex]D=-83[/tex]

Solution is [tex]x=\frac{-b\pm\sqrt{D}}{2a}[/tex]

[tex]x=\frac{-1\pm\sqrt{-83}}{2(3)}[/tex]

[tex]x=\frac{-1\pm\sqrt{83}i}{6}[/tex]

[tex]x=\frac{-1+\sqrt{83}i}{6},\frac{-1-\sqrt{83}i}{6}[/tex]

Therefore, The factors are

[tex][x+(\frac{-1+\sqrt{83}i}{6})][x-(\frac{-1-\sqrt{83}i}{6})][/tex]

So, 1,2,4 are not the options.

Now, check for prime

In a quadratic equation if [tex]D=\sqrt{b^2-4ac}[/tex] form a complete square then it is not prime and vice-versa.

In this question [tex]D=\sqrt{-83}[/tex]  does not make a perfect square.

Therefore, It is a prime.

Option 3 is correct.