Respuesta :
if dy / dt = 1, then y = t. If y = t, then y = 2/3, and then you could do 3 /2/3, getting us 3/2
[tex]\bf xy=2\implies y=\cfrac{2}{x}\\\\
-----------------------------\\\\
\cfrac{dx}{dt}\cdot y\quad +\quad x\cdot \cfrac{dy}{dt}=0\implies \cfrac{dx}{dt}=-\cfrac{x}{y}\cdot \cfrac{dy}{dt}
\\\\\\
\textit{now, we know that }
\begin{cases}
\frac{dy}{dt}=1\\
x=3\\
y=\frac{2}{x}
\end{cases}\qquad thus
\\\\\\
\cfrac{dx}{dt}=-\cfrac{3}{\frac{2}{3}}\cdot 1\implies \cfrac{dx}{dt}=-\cfrac{9}{2}[/tex]