given its parent function g(x) = (1/2)^x, what is the equation of the function shown?



Answer: The correct equation is (B) [tex]f(x)=-2\left(\dfrac{1}{2}\right)^x+1.[/tex]
Step-by-step explanation: We are given to select the correct equation of the function f(x) shown in the figure.
From the graph given in the figure, we have
[tex]f(-1)=-3,~~f(0)=-1,~~f(1)=0.[/tex]
(A) First option is
[tex]f(x)=-3\left(\dfrac{1}{2}\right)^x+1.[/tex]
From here, we get
[tex]f(-1)=-3\left(\dfrac{1}{2}\right)^{-1}+1=-3\times 2+1=-5\neq -3.[/tex]
So, this option is not correct.
(B) First option is
[tex]f(x)=--2\left(\dfrac{1}{2}\right)^x+1.[/tex]
From here, we get
[tex]f(-1)=-2\left(\dfrac{1}{2}\right)^{-1}+1=-2\times 2+1=-3\\\\f(0)=-2\left\dfrac{1}{2}\right)^0+1=-2+1=-1,\\\\f(1)=-2\left(\dfrac{1}{2}\right)^1+1=-1+1=0.[/tex]
So, this option is correct.
(C) Third option is
[tex]f(x)=-\left(\dfrac{1}{2}\right)^x-3.[/tex]
From here, we get
[tex]f(-1)=-\left(\dfrac{1}{2}\right)^{-1}-3=-1\times 2-3=-5\neq -3.[/tex]
So, this option is not correct.
(D) Fourth option is
[tex]f(x)=-\left(\dfrac{1}{2}\right)^x-1.[/tex]
From here, we get
[tex]f(-1)=-\left(\dfrac{1}{2}\right)^{-1}-1=--\times 2-1=-3,\\\\f(0)=-\left\dfrac{1}{2}\right)^0-1=-1-1=-2\neq -1.[/tex]
So, this option is not correct.
Thus, the correct function is
(B) [tex]f(x)=-2\left(\dfrac{1}{2}\right)^x+1.[/tex]