Respuesta :

Answer:

[tex]tn = {3 \times \sqrt{2} }^{n - 1} [/tex]

Step-by-step explanation:

since it is geometric sequence we will use the formula

[tex]tn = {ar}^{n - 1} [/tex]

n = 10

r = √2

a = 3

lets first see the result of the 10th term

[tex]t10 = {ar}^{10 - 1} [/tex]

[tex]t10 = {ar}^{9} [/tex]

[tex]t10 = {3 \times \sqrt{2} }^{9} [/tex]

t10 = 3 × 22.63

t10 = 67.89

approximately 68

t10 = 68

for the nth term

Tn = ar^n–1

[tex]tn = {3 \times (\sqrt{2} })^{n - 1} [/tex]

i hope this helps

Answer:

[tex]a_n=3\left(\sqrt{2}\right)^{n-1}[/tex]

[tex]a_{10}=48 \sqrt{2}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{5.5 cm}\underline{Geometric sequence}\\\\$a_n=ar^{n-1}$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\\phantom{ww}$\bullet$ $r$ is the common ratio.\\\phantom{ww}$\bullet$ $a_n$ is the $n$th term.\\\phantom{ww}$\bullet$ $n$ is the position of the term.\\\end{minipage}}[/tex]

Given:

  • [tex]a = 3[/tex]
  • [tex]r = \sqrt{2}[/tex]
  • [tex]n=10[/tex]

Substitute the given values of a and r into the formula to create an equation for the nth term:

[tex]a_n=3\left(\sqrt{2}\right)^{n-1}[/tex]

To find the 10th term, substitute n = 10 into the equation:

[tex]\implies a_{10}=3\left(\sqrt{2}\right)^{10-1}[/tex]

[tex]\implies a_{10}=3\left(\sqrt{2}\right)^{9}[/tex]

[tex]\implies a_{10}=3 \cdot 2^{\frac{9}{2}}[/tex]

[tex]\implies a_{10}=3 \cdot 2^{4+\frac{1}{2}}[/tex]

[tex]\implies a_{10}=3 \cdot 2^{4} \cdot 2^{\frac{1}{2}}[/tex]

[tex]\implies a_{10}=3 \cdot 16 \cdot \sqrt{2}[/tex]

[tex]\implies a_{10}=48 \sqrt{2}[/tex]