Respuesta :

Answer:

-9

Step-by-step explanation:

Given function:

[tex]f(x)=-9x+4[/tex]

Given x-values:

  • x₁ = -5
  • x₂ = 0

Calculate the value of the function for the two given values of x:

[tex]\begin{aligned}\implies f(x_1)&=-9(-5)+4\\&=45+4\\&=49\end{aligned}[/tex]

[tex]\begin{aligned}\implies f(x_2)&=-9(0)+4\\&=0+4\\&=4\end{aligned}[/tex]

[tex]\boxed{\begin{minipage}{6.3 cm}\underline{Average rate of change of function $f(x)$}\\\\$\dfrac{f(b)-f(a)}{b-a}$\\\\over the interval $a \leq x \leq b$\\\end{minipage}}[/tex]

As -5 < 0:

  • a = x₁ = -5
  • b = x₂ = 0

Therefore:

[tex]\begin{aligned} \implies \textsf{Average rate of change}&=\dfrac{f(x_2)-f(x_1)}{x_2-x_1}\\\\&=\dfrac{4-49}{0-(-5)}\\\\&=\dfrac{-45}{5}\\\\&=-9\end{aligned}[/tex]