The perimeter of a rectangle is 38". If the
length is 3" more than the width, find the
width:
9-A 17 1/2"
9-B 8"
9-C
11"
9-D 14 1/2"

Respuesta :

Answer:

Length = 11"  and  width = 8".

Step-by-step explanation:

let L be the length of the rectangle

and w be its width.

Formula (perimeter P of a rectangle) :

P = 2 × (L + w)

================================

Then

L = w + 3

and

P = 2 × (L + w)

  = 2 × (w + 3 + w)

  = 2 × (2w + 3)

  = 4w + 6

Solving the equation P = 4w + 6  for w :

P = 4w + 6

38 = 4w + 6

32 = 4w

w = 32 ÷ 4

   = 8

Determining the length L :

L = w + 3

L = 8 ÷ 3

  = 11

Conclusion:

L = 11  and  w = 8

Answer:

Width = 8"

Step-by-step explanation:

2(t+w) = 38              Eq. 1

t = w+3                     Eq. 2

t = length

w = width

From Eq. 2:

t+w = 38/2

t+w = 19

t = 19 - w                    Eq. 3

Replacing Eq. 3 in Eq. 2:

19 - w = w + 3

19 - 3 = w + w

16 = 2w

16/2 = w

w = 8

Frm Eq. 2:

t = w + 3

t = 8 + 3

t = 11

Check:

From Eq. 1

2(t+w) = 38

2(11+8) = 38

2(19) = 38