Respuesta :

case a) the repeating decimal is 36

Let

[tex]x=0.1363636..[/tex]

Multiply x by a power of  [tex]10[/tex], one that keeps the decimal part of the number the same:


[tex]1,000x=136.3636..[/tex]

[tex]10x=1.3636..[/tex]

Subtract [tex]10x[/tex] from [tex]\\1000x[/tex]


[tex]1,000x-10x=136.3636..-1.3636..=135[/tex]

The repeating decimals should cancel out

[tex]\\990x=135[/tex]

solve for x

Divide by [tex]990[/tex] both sides

[tex]990x/990=135/990[/tex]

[tex]x=135/990[/tex]

Simplify

Divide by [tex]45[/tex] both numerator and denominator

[tex]x=3/22[/tex]

therefore

the answer case a) is

The fraction in simplest form is [tex]3/22[/tex]

case b) the repeating decimal is 136

Let

[tex]x=0.136136136...[/tex]

Multiply x by a power of  [tex]10[/tex], one that keeps the decimal part of the number the same:


[tex]1,000x=136.136136...[/tex]

Subtract [tex]x[/tex] from [tex]\\1000x[/tex]


[tex]1,000x-x=136.136136...-0.136136...=136[/tex]

The repeating decimals should cancel out

[tex]\\999x=136[/tex]

solve for x

Divide by [tex]999[/tex] both sides

[tex]999x/999=136/999[/tex]

[tex]x=136/999[/tex] -----> irreducible

therefore

the answer case b) is

The fraction in simplest form is [tex]136/999[/tex]


Answer:

the answer is 3/22

Step-by-step explanation:

im 100% sure