Respuesta :
Reflected over x axis => y=3(-x)
Reflected over y axis => y=-(3x)
Translated down 2 => y=3x-2
Translated right 2 => y=3(x-2)
Translated up 1 => y=3x+1
Translated left 1 => y=3(x+1)
Hope this helps
Reflected over y axis => y=-(3x)
Translated down 2 => y=3x-2
Translated right 2 => y=3(x-2)
Translated up 1 => y=3x+1
Translated left 1 => y=3(x+1)
Hope this helps
Answer: The answer is given below.
Step-by-step explanation: We are given to match the function formulae with the corresponding transformation of the parent function [tex]y=(x-1)^2.[/tex]
We know that, if x changes to (x + a), then the graph will move 'a' units left or right depending on 'a' is positive or negative.
Similarly, if y changes to (y + b), then the graph will move 'b' units upwards or downwards depending on 'a' is negative or positive.
The correct matches are as follows:
[tex](1)~y=-(x-1)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Reflection across the X-axis}\\\\(2)~y=(x-1)^2+1~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated up by 1 unit}\\\\(3)~y=(x+1)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated left by 2 units}\\\\(4)~y=(x-2)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated right by 1 unit}\\\\(5)~y=(x-1)^2-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated down by 3 units}\\\\(6)~y=(x+3)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated left by 4 units}.[/tex]