Match each function formula with the corresponding transformation of the parent function y = (x - 1)2

1. y = - (x - 1)2                                      Translated right by 1 unit
2. y = (x - 1)2 + 1                                    Translated down by 3 units
3. y = (x + 1)2                                          Reflected over the y-axis
4. y = (x - 2)2                                       Reflected over the x-axis
5. y = (x - 1)2 - 3                               Translated up by 1 unit
6. y = (x + 3)2                               Translated left by 4 units

Respuesta :

Reflected over x axis => y=3(-x)
Reflected over y axis => y=-(3x)
Translated down 2     => y=3x-2
Translated right 2      => y=3(x-2)
Translated up 1        =>  y=3x+1
Translated left 1       =>  y=3(x+1)
Hope this helps

Answer: The answer is given below.

Step-by-step explanation:  We are given to match the function formulae with the corresponding transformation of the parent function [tex]y=(x-1)^2.[/tex]

We know that, if x changes to (x + a), then the graph will move 'a' units left or right depending on 'a' is positive or negative.

Similarly, if y changes to (y + b), then the graph will move 'b' units upwards or downwards depending on 'a' is negative or positive.

The correct matches are as follows:

[tex](1)~y=-(x-1)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Reflection across the X-axis}\\\\(2)~y=(x-1)^2+1~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated up by 1 unit}\\\\(3)~y=(x+1)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated left by 2 units}\\\\(4)~y=(x-2)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated right by 1 unit}\\\\(5)~y=(x-1)^2-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated down by 3 units}\\\\(6)~y=(x+3)^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{Translated left by 4 units}.[/tex]