contestada

Use mathematical induction to prove that the statement is true for every positive integer n. 8 + 16 + 24 + . . . + 8n = 4n(n + 1)

Respuesta :

First show the statement holds for [tex]n=1[/tex]. The left hand side is just 8, and the right hand side is [tex]4(1)(1+1)=8[/tex], so it's true.

Assume the statement holds for [tex]n=k[/tex], i.e.

[tex]8+16+\cdots+8(k-1)+8k=4k(k+1)[/tex]

and use this to show it holds for [tex]n=k+1[/tex], i.e.

[tex]8+16+\cdots+8(k-1)+8k+8(k+1)=4(k+1)(k+2)[/tex]

By the assumption above, you have

[tex]\underbrace{8+16+\cdots+8(k-1)+8k}_{n=k}+8(k+1)=4k(k+1)+8(k+1)=4(k+1)(k+2)[/tex]

so the statement is true for all [tex]n\ge1[/tex].