Respuesta :

Simplified form would be twentieth root of 6
Ver imagen anon358

Answer:

[tex]\sqrt[20]{6}[/tex]

Step-by-step explanation:

we need to simplify

[tex]\frac{\sqrt[4]{5}}{\sqrt[5]{6}}[/tex]

Each radical can be written in fraction form

[tex]\sqrt[4]{6} = 6^{\frac{1}{4}}[/tex]

[tex]\sqrt[5]{6} = 6^{\frac{1}{5}}[/tex]

[tex]\frac{\sqrt[4]{5}}{\sqrt[5]{6}}=\frac{6^{\frac{1}{4}}}{6^{\frac{1}{5}}}[/tex]

Both top and bottom have same base so we subtract the exponents

[tex]6^{\frac{1}{4} -\frac{1}{5}}[/tex]

Take common denominator to subtract the fractions

[tex]\frac{1*5}{4*5} -\frac{1*4}{5*4}[/tex]

[tex]\frac{5-4}{20} =\frac{1}{20}[/tex]

[tex]6^{\frac{1}{4} -\frac{1}{5}}=6^\frac{1}{20}[/tex]

[tex]6^\frac{1}{20} =\sqrt[20]{6}[/tex]