Respuesta :
y=25*3^x
1170=25*3^x
25*3^x=1170
3^x=1170/25
3^x=46.8
Log10(3^x)=LOg10(46.8)
x*log10(3)=log10(46.8)
x=(log10/46.8))/(log10(3))
x=1.60724585307/0.47712125472
x=3.50067375233
x=3.50
1170=25*3^x
25*3^x=1170
3^x=1170/25
3^x=46.8
Log10(3^x)=LOg10(46.8)
x*log10(3)=log10(46.8)
x=(log10/46.8))/(log10(3))
x=1.60724585307/0.47712125472
x=3.50067375233
x=3.50
The solutions of function y = 25*3ˣ is 3.55
What are the properties of logarithms?
There are four basic properties of logarithms:
logₐ(xy) = logₐx + logₐy.
logₐ(x/y) = logₐx - logₐy.
logₐ(xⁿ) = n logₐx.
logₐx = logₓa / logₓb.
According to the problem, we will use some of the basic logarithmic properties,
Given as function :y=25*3ˣ
Substitute y = 1170 in given function
1170=25*3ˣ
25*3ˣ=1170
3ˣ = 1170/25
3ˣ = 243/5
Take natural logarithms both sides
log₁₀3ˣ = log₁₀(243/5)
log₁₀3ˣ = log₁₀243 -log₁₀5
log₁₀3ˣ = log₁₀3⁵ -log₁₀5
xlog₁₀3 = 5log₁₀3 -log₁₀5
log₁₀5 = 5log₁₀3 - xlog₁₀3
log₁₀5 = (5 - x)log₁₀3
0.70 = (5 - x)0.48
0.70/0.48 = 5 - x
1.45 = 5 - x
x = 5 - 1.45
x = 3.55
Hence, the solutions of function y = 25*3ˣ is 3.55
Learn more logarithmic properties here:
brainly.com/question/24211708
#SPJ5