Respuesta :

The volume of a square pyramid with base edges of 48 cm and a slant height of 26 cm = 7,680cm^3

Answer: [tex]\text{V}=7,680\ cm^3[/tex]

Step-by-step explanation:

The volume of a pyramid is given by :-

[tex]\text{Volume}=\dfrac{1}{3}\text{base area *height}[/tex]

Given: Slant height of the pyramid (l)= 26 cm

The base edge of the pyramid (s)=48 cm

Now, the height of the pyramid is given by :

[tex]h=\sqrt{l^2-(\dfrac{s}{2})^2}\\\\\Rightarrow\ h=\sqrt{26^2-(\dfrac{48}{2})^2}\\\\\Rightarrow\ h=10\ cm[/tex]

Now, the volume of the square pyramid is given by :-

[tex]\text{V}=\dfrac{1}{3}(48)^2(10)\\\\\Rightarrow\ \text{V}=7680\ cm^3[/tex]