Respuesta :
The volume of a square pyramid with base edges of 48 cm and a slant height of 26 cm = 7,680cm^3
Answer: [tex]\text{V}=7,680\ cm^3[/tex]
Step-by-step explanation:
The volume of a pyramid is given by :-
[tex]\text{Volume}=\dfrac{1}{3}\text{base area *height}[/tex]
Given: Slant height of the pyramid (l)= 26 cm
The base edge of the pyramid (s)=48 cm
Now, the height of the pyramid is given by :
[tex]h=\sqrt{l^2-(\dfrac{s}{2})^2}\\\\\Rightarrow\ h=\sqrt{26^2-(\dfrac{48}{2})^2}\\\\\Rightarrow\ h=10\ cm[/tex]
Now, the volume of the square pyramid is given by :-
[tex]\text{V}=\dfrac{1}{3}(48)^2(10)\\\\\Rightarrow\ \text{V}=7680\ cm^3[/tex]