w+1=l
area=lw
area=(w+1)w
1500=w²+w
minus 1500 both sides
0=w²+w-1500
use quadratic formula
for
aw²+bw+c=0
[tex]w= \frac{-b+/- \sqrt{b^2-4ac} }{2a} [/tex]
[tex]w= \frac{-(1)+/- \sqrt{1^2-4(1)(-1500)} }{2(1)} [/tex]
[tex]w= \frac{-1+/- \sqrt{1+6000} }{2} [/tex]
[tex]w= \frac{-1+/- \sqrt{6001} }{2} [/tex]
77.466121627457250675410729387462
[tex]w= \frac{-1+/- 77.466121627457250675410729387462}{2} [/tex]
it can't be minus since measures cannot be negative
[tex]w= \frac{-1+ 77.466121627457250675410729387462}{2} [/tex]
[tex]w= \frac{76.466121627457250675410729387462}{2} [/tex]
w=38.233060813728625337705364693731
to nearest whole
w=38
l=38+1=39
the dimentions are 38 by 39 inches