Respuesta :
Let
Eqn 1 be 8x = 2y + 5
And,
3x = y + 7
therefore
Eqn 2 is x= 1/3(y+7)
Sub 2 into 1 gives:
8(1/3(y+7)) = 2y + 5
8/3(y) + 56/3 = 2y + 5
2/3(y) = –41/3
2y=–41
y= –41/2
X= –9/2.
Therefore, {(-9/2, -41/2)} is your solution set. As the notation is equal to (x,y)
Eqn 1 be 8x = 2y + 5
And,
3x = y + 7
therefore
Eqn 2 is x= 1/3(y+7)
Sub 2 into 1 gives:
8(1/3(y+7)) = 2y + 5
8/3(y) + 56/3 = 2y + 5
2/3(y) = –41/3
2y=–41
y= –41/2
X= –9/2.
Therefore, {(-9/2, -41/2)} is your solution set. As the notation is equal to (x,y)
Answer: The correct option is
(B) [tex]\left(-\dfrac{9}{2},-\dfrac{41}{2}\right).[/tex]
Step-by-step explanation: We are given to solve the following system of equations by the substitution method :
[tex]8x=2y+5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\3x=y+7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]
From equation (ii), we have
[tex]3x=y+7\\\\\Rightarrow y=3x-7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)[/tex]
Substituting the value of y from equation (iii) in equation (i), we get
[tex]8x=2(3x-7)+5\\\\\Rightarrow 8x=6x-14+5\\\\\Rightarrow 8x-6x=-9\\\\\Rightarrow 2x=-9\\\\\Rightarrow x=-\dfrac{9}{2}.[/tex]
From equation (iii), we get
[tex]y=3\times\left(-\dfrac{9}{2}\right)-7\\\\\\\Rightrarow y=-\dfrac{27}{2}-7\\\\\\\Rightarrow y=-\dfrac{41}{2}.[/tex]
Thus, the required solution of the given system is [tex](x,y)=\left(-\dfrac{9}{2},-\dfrac{41}{2}\right).[/tex]
Option (B) is CORRECT.