Respuesta :

msm555

Answer:

1. 779.42 unit^2

2. 585 unit^2

Step-by-step explanation:

1.

no. of side (n)=6

apothem(a)=15

Each central angle=360/n =360/6=60 degree

Here angle AOZ =60/2=30 degree

In triangle AOZ with respect to O Tan O= opposite /base

Tan 30=AZ/15

AZ-Tan 30*15=[tex]5\sqrt{3}[/tex]

AB=[tex]2*5 \sqrt{3}=10 \sqrt{3}[/tex]

Therefore, the length of each side (s)=[tex]10 \sqrt{3}[/tex]

Now

perimeter(p)=n*s=[tex]6*10 \sqrt{3}=60 \sqrt{3}[/tex]Area

[tex]Area=\frac{P*a}{2}[/tex]

substituting value:

[tex]Area=\frac{60\sqrt{3}*15}{2}=\bold{779.42\: unit^2}[/tex]

[tex]\hrulefill[/tex]

2.

no. of side (n)=6

length of one side(s)=15

Perimeter(p)=n*s=6*15=90 units

Now finding apothem(a),

[tex]\bold{apothem(a)=\frac{s}{2Tan(\frac{180^o}{n})}}[/tex]

by substituting value, we get,

[tex]\bold{apothem(a)=\frac{15}{2Tan(\frac{180^o}{6})}=12.99=13 units}[/tex]

Now, we have

[tex]Area=\frac{P*a}{2}[/tex]

substituting value:

[tex]Area=\frac{90*13}{2}=\bold{585\: unit^2}[/tex]

[tex]\hrulefill[/tex]

Ver imagen msm555

Answer:

1)  779.4 square units (nearest tenth)

2)  584.6 square units (nearest tenth)

Step-by-step explanation:

To find the areas of the given regular polygons, first determine their side lengths and apothems, then use the area formula:

[tex]\boxed{A=\dfrac{n\cdot s\cdot a}{2}}[/tex]

Question 1

The given diagram shows a six-sided regular polygon with an apothem measuring 15 units. Therefore:

  • Number of sides: n = 6
  • Apothem: a = 15

The formula for the apothem of a regular polygon is:

[tex]\boxed{\begin{minipage}{5.5cm}\underline{Apothem of a regular polygon}\\\\$a=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{n}\right)}$\\\\where:\\\phantom{ww}$\bullet$ $s$ is the side length.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}[/tex]

Therefore, to find the side length, s, of the given regular polygon, substitute the values of a and n into the apothem formula and solve for s:

[tex]\implies 15=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{6}\right)}[/tex]

[tex]\implies 15=\dfrac{s}{2 \tan\left(30^{\circ}\right)}[/tex]

[tex]\implies s=30\tan\left(30^{\circ}\right)[/tex]

[tex]\implies s=30\cdot \dfrac{\sqrt{3}}{3}[/tex]

[tex]\implies s=10\sqrt{3}[/tex]

Therefore, the side length of the polygon is 10√3 units.

The formula for the area of a regular polygon is:

[tex]\boxed{\begin{minipage}{6cm}\underline{Area of a regular polygon}\\\\$A=\dfrac{n\cdot s\cdot a}{2}$\\\\where:\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\ \phantom{ww}$\bullet$ $s$ is the length of one side.\\ \phantom{ww}$\bullet$ $a$ is the apothem.\\\end{minipage}}[/tex]

Therefore, to find the area of the given regular polygon, substitute the values of n, s and a into the area formula and solve for A:

[tex]\implies A=\dfrac{6 \cdot 10\sqrt{3} \cdot 15}{2}[/tex]

[tex]\implies A=\dfrac{900\sqrt{3}}{2}[/tex]

[tex]\implies A=450\sqrt{3}[/tex]

[tex]\implies A=779.4\; \sf square \; units\;(nearest\;tenth)[/tex]

Therefore, the area of the given regular polygon is 779.4 square units (nearest tenth).

[tex]\hrulefill[/tex]

Question 2

The given diagram shows a six-sided regular polygon with a side length measuring 15 units. Therefore:

  • Number of sides: n = 6
  • Side length: s = 15

The formula for the apothem of a regular polygon is:

[tex]\boxed{\begin{minipage}{5.5cm}\underline{Apothem of a regular polygon}\\\\$a=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{n}\right)}$\\\\where:\\\phantom{ww}$\bullet$ $s$ is the side length.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}[/tex]

Therefore, to find the apothem, a, of the given regular polygon, substitute the values of s and n into the apothem formula and solve for a:

[tex]\implies a=\dfrac{15}{2 \tan\left(\dfrac{180^{\circ}}{6}\right)}[/tex]

[tex]\implies a=\dfrac{15}{2 \tan\left(30^{\circ}\right)}[/tex]

[tex]\implies a=\dfrac{15}{2 \cdot \dfrac{\sqrt{3}}{3}}[/tex]

[tex]\implies a=\dfrac{15\sqrt{3}}{2}[/tex]

Therefore, the apothem of the polygon is (15√3)/2 units.

The formula for the area of a regular polygon is:

[tex]\boxed{\begin{minipage}{6cm}\underline{Area of a regular polygon}\\\\$A=\dfrac{n\cdot s\cdot a}{2}$\\\\where:\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\ \phantom{ww}$\bullet$ $s$ is the length of one side.\\ \phantom{ww}$\bullet$ $a$ is the apothem.\\\end{minipage}}[/tex]

Therefore, to find the area of the given regular polygon, substitute the values of n, s and a into the area formula and solve for A:

[tex]\implies A=\dfrac{6 \cdot 15 \cdot \dfrac{15\sqrt{3}}{2}}{2}[/tex]

[tex]\implies A=\dfrac{675\sqrt{3}}{2}[/tex]

[tex]\implies A=584.6\; \sf square \; units\;(nearest\;tenth)[/tex]

Therefore, the area of the given regular polygon is 584.6 square units (nearest tenth).